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Abstract

We present a set of tools designed to help editors place cuts and cre-
ate transitions in interview video. To help place cuts, our interface
links a text transcript of the video to the corresponding locations
in the raw footage. It also visualizes the suitability of cut locations
by analyzing the audio/visual features of the raw footage to find
frames where the speaker is relatively quiet and still. With these
tools editors can directly highlight segments of text, check if the
endpoints are suitable cut locations and if so, simply delete the text
to make the edit. For each cut our system generates visible (e.g.
jump-cut, fade, etc.) and seamless, hidden transitions.We present a
hierarchical, graph-based algorithm for efficiently generating hid-
den transitions that considers visual features specific to interview
footage. We also describe a new data-driven technique for setting
the timing of the hidden transition. Finally, our tools offer a one
click method for seamlessly removing ’ums’ and repeated words
as well as inserting natural-looking pauses to emphasize semantic
content. We apply our tools to edit a variety of interviews and also
show how they can be used to quickly compose multiple takes of
an actor narrating a story.
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1 Introduction

Interview video frequently appears in broadcast news, documentary
films, and online lectures. Such video usually focuses on the head
and upper body of a person who explains a concept while looking at
the camera. The challenge in editing interview video is to convert
hours of raw footage into a concise clip that conveys the desired
story. The process involves two steps: (1) choosing where to cut
segments of the raw footage and (2) creating audio/visual transi-
tions that connect the remaining segments into the final clip.
To place a cut, the editor must consider both the semantic content
and the audio/visual attributes of the raw footage. Editors often be-
gin by watching the entire raw footage several times and manually
building an index that describes its content. Once the editor decides
on the story, he can use the index to find the segments correspond-
ing to specific content. The editor must also account for the au-
dio/visual attributes of the segments when deciding where to cut.
For example, cutting while the speaker is in the middle of saying a
word or is gesturing energetically is often undesirable because such
cuts interrupt the audio/visual flow of the video [O’Steen 2009].

Transcript View

Timeline (Cut Suitability)

Figure 1: Our interface. Selecting text in the transcript highlights
corresponding regions of the timeline. Vertical bars in the transcript
and blue bars in the timeline visualize cut suitability; places where
a cut is least likely to interrupt the flow of the video.

After choosing the rough position of a cut the editor must create a
transition that connects the video segments before and after the cut.
Such transitions fall into two main categories;

Hidden Transitions conceal the cut by smoothly joining the seg-
ments. Thus, they allow viewers to remain focused on the con-
tinuous flow of semantic content in the video.

Visible Transitions introduce a noticeable change in audio/visual
content (e.g. jump-cut, fade, etc.) between the segments. They
usually indicate a break in the flow of semantic content.

Producing hidden transitions can be difficult as it requires either
synthetically interpolating new frames or finding existing frames
within the footage to seamlessly join the segments. Yet, interpola-
tion [Mahajan et al. 2009; Brox et al. 2004] is only effective when
the endpoint frames are similar in appearance, and manually search-
ing for existing frames in the entire raw footage is impractical. As a
result, editors often end up using visible transitions to join segments
even when there is no break in the flow of semantic content.
In this work, we present tools for interactively placing cuts and
creating hidden as well as visible transitions in interview video
footage. To help editors place the cuts, we combine crowdsourc-
ing (castingwords.com) to obtain a text transcript of the raw
footage, with text-audio alignment software [Virage ] to build an
index that links each word in the transcript with the corresponding
location in the footage. The editor can then directly edit the text
script and our tools propagate the changes to the video. We also vi-
sualize the suitability of cut locations by analyzing the audio/visual
features of the raw footage to find frames where the speaker is rel-
atively quiet and still (Figure 1). Together these tools allow the edi-
tor to focus on the semantic content and quickly select cut locations
that do not interrupt the flow of the video in an unnatural manner.
For each cut, our system automatically generates hidden and visi-
ble transitions so that the editor can see each possibility and choose
whichever one is most appropriate. We present a new algorithm
for efficiently generating hidden transitions. Our method builds on
the general approach of constructing a similiarity graph between
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Figure 2: Example editing session with our interface. The transcript view (top) shows transcript text aligned with the video timeline (bottom).
The editor considers two options (a–b) for removing the phrase “communicating that story.” The cut suitability visualization in both the
transcript view and timeline indicates that option (a) is a better cut because it lines up with vertical bars in the transcript and peaks in
the timeline which imply high cut suitability. Our interface also highlights in red the ’ums’ and repeated words that can be removed and
automatically replaced with seamless transitions, even when the suitabilty scores are low (c).

the raw frames and walking the graph to select the smoothest set
of in-between frames [Schödl et al. 2000; Kwatra et al. 2003;
Kemelmacher-Shlizerman et al. 2011]. Unique to our approach is a
frame matching distance that considers facial appearance, body ap-
pearance, and location of the speaker within the frame. We also use
hierarchical clustering to significantly reduce the number of frame-
to-frame comparisons necessary to achieve good performance.
To further refine the resulting transition we apply optical flow in-
terpolation [Brox et al. 2004] with a new data-driven technique for
selecting the number of interpolated frames. Our technique sets the
timing of the transitions so that any motions of the speaker appear
natural. Such timing is crucial for maintaining the flow of the video.
Beyond placing simple cuts and transitions, our interface offers ad-
ditional tools for increasing the quality of the final clip. The tran-
script view highlights ’ums’ and repeated words and gives editors
a one click option for seamlessly removing them. Editors can also
insert natural-looking pauses, in which the speaker appears to be at
rest, to further emphasize important semantic content.
We apply our tools on videos from a variety of sources including
a corporate marketing department and professional journalists. In
addition to interview editing, we show how our interface can be
used to quickly compose multiple takes of an actor narrating a story.
Finally, we demonstrate the success of our approach by providing
visual comparisons to a number of other techniques.

2 Related Work

Commercial video editing software such as Adobe Premiere or Ap-
ple FinalCutPro provide low-level tools for rearranging segments
of video. These tools force editors to manually review, segment and
compose the video into the final clip. As a result researchers have
developed higher-level techniques to facilitate editing. We focus on
the subset of these techniques that are most related to our work.
Navigating, Indexing and Editing Videos: Reviewing long
sequences of raw footage can be tedious. Truong and
Venkatesh [2007] survey a number of techniques for index-
ing video by first segmenting it into shots [Boreczky and Rowe
1996] and then summarizing each shot by a static keyframe [Zhang
et al. 1995]. Users can navigate and edit the video by scanning
through the keyframes and rearranging them [Ueda et al. 1991;
Girgensohn et al. 2000]. Researchers have also developed more
sophisticated motion segmentation methods to enable navigation
via direct manipulation [Dragicevic et al. 2008; Goldman et al.
2008; Karrer et al. 2008]. Another approach is to segment the
video based on speech recognition [Bregler and Omohundro 1995;
Potamianos et al. 2003]. Silver [Casares et al. 2002] is a complete
editing system that allows users to navigate by clicking on words

in the transcript. While our system similarly allows navigation and
editing through a text transcript we also provide tools to visualize
suitable cut locations and to generate transitions.
Ranjan et al. [2008] propose a system designed for videos of group
meetings that applies television production principles to automati-
cally capture and then edit the video. However, their work only fo-
cuses on visible transitions and cannot generate hidden transitions.
Transitions Based on Reusing Frames: Video texture [Schödl et al.
2000; Kwatra et al. 2003; Agarwala et al. 2005] and video com-
pletion [Wexler et al. 2007] methods generate seamless loops or
fill-holes by copying frames or spatio-temporal patches based on
pixel-level color and motion similarity. The cost of these methods
scales poorly with the number of pixels and is prohibitive even
for relatively short videos of over 1000 frames. Moreover, these
methods are designed primarily for stochastic video and cannot
handle the highly structured appearance and motion of interview
footage. Video rewrite [Bregler et al. 1997] focuses on talking head
videos; it extracts the speaker’s mouth position for each phoneme
in the original video and can then re-composite the mouth to match
the phonemes in a new audio track. Kemelmacher-Shlizerman et
al.’s [2010] puppeting system matches video of a puppeteer’s face
with the closest frames of another person. Neither technique is de-
signed to smoothly transition between two endpoint frames.
Our work is closely related to Photobios [Kemelmacher-Shlizerman
et al. 2011] which creates a face animation from a collection of
photographs of the same person. It builds a facial similarity graph
to transition between two photographs. We extend their approach in
two ways. First, we include body/hand appearance and face location
terms in our frame comparison metric to improve the smoothness of
transitions. Second, we develop a hierarchical clustering approach
based on our comparison metric to accelerate our technique.
Interpolation, Warping and Morphing: General-purpose tech-
niques for smoothly synthesizing intermediate images between a
pair of endpoint frames include interpolation [Brox et al. 2004; Ma-
hajan et al. 2009], warping [Gomes 1999] and morphing [Shecht-
man et al. 2010]. These methods do not account for appearance and
motion constraints imposed by the visual content and therefore re-
quire the endpoint frames to be extremely similar to produce good
results. Face-specific warping techniques [Dale et al. 2011] focus
on transferring expressions or entire faces to a new image, but can-
not handle gestures or bodies. Moreover, these techniques are not
designed to synthesize new intermediate frames but rather to re-
place regions of existing frames. Methods for smoothly interpolat-
ing or morphing facial expressions often rely on first mapping the
video to a 3D face model [Blanz and Vetter 1999; Zhang et al. 2004;
Pighin et al. 1998]. As a result these techniques are computationally
expensive and may require a specialized 3D capture setup.
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Figure 3: We use our frame distance metric D(i, j) to select frames of the footage that are visually closest to a reference frame (columns
2, 3). When we drop the face appearance term (columns 4, 5) we identify frames that match the body, but not the face, and vice versa when
we drop the body appearance term (columns 5, 6). The L2 distance produces poor matches because it cannot distinguish whether large pixel
differences are due to changes in hand positions or facial expressions. Note that we eliminate frames that are within a window of 20 frames
from the reference to ensure a greater variety in the selected frames for these comparisons. Frame timestamps are given in the corners.

3 Video Editing Interface

Our interface includes several features that help editors find rele-
vant portions of the footage, choose cut locations, and decide which
transitions to use. We present these features in the context of an ex-
ample editing session (Figures 1 and 2). We encourage readers to
also view the paper video 1 which walks through the features.
Linked Transcript View: Interview editors often start by tran-
scribing the footage and deciding on the story [O’Steen 2009].
To facilitate this task, our interface provides a transcript view
that shows text obtained via a crowdsourced transcription service
(castingwords.com). The service costs $1.50 per minute of
footage and, in our experience, produces far superior results to
commercial speech-to-text software. We automatically align the
transcript to the footage using off-the-shelf software from Auton-
omy [Virage ]. Highlighting text selects the corresponding segment
of the timeline and vice versa. In our example, the editor uses the
transcript view to identify a segment about digital stories and selects
the text to quickly locate the corresponding footage (Figure 2a).
Cut Suitability Visualization: Editors rarely place a cut when the
speaker is in the middle of talking or gesturing actively because
such cuts disrupt the audio/visual flow [O’Steen 2009]. To help ed-
itors avoid such cuts, we identify segments in which the speaker
is relatively quiet and still. Our interface visualizes such cut loca-
tions in both the transcript view and timeline. The timeline plots
a per-frame cut suitability score and the transcript view renders a
vertical bar wherever the set of inter-word frames contains at least
one frame with a suitability score greater than 0.9 (out of 1.0).
Thus, vertical bars indicate places where a cut is most likely to
yield a high-quality hidden transition and not disrupt the flow of
the video. In our example, the editor considers how to remove the
phrase “communicating that story.” While Figures 2a and 2b show
two ways to cut the text, the cut suitability visualizations indicate
that the first option will create a better hidden transition. We also
identify ’ums’ and repeated words that can be cut and replaced with
hidden transitions, even when the suitability scores are relatively
low (Figure 2c). The editor can then remove such artifacts with a
single click. Section 5 describes our techniques for computing cut
suitability scores and identifying removable words. An editor may
also choose to make a cut for purely semantic reasons, even though
the suitability scores are low. In such cases, our system is still of-
ten able to generate reasonable hidden transitions (Figure 6 and 7).
Once the editor has decided where to cut, he simply deletes the cor-
responding text in the transcript view, and the edit propagates to
both the timeline and the resulting video.

1http://vis.berkeley.edu/papers/vidtrans/

Transition Alternatives: Our system generates hidden transitions,
pauses and visible transitions for each cut and allows the editor to
review these alternatives before deciding which one to apply. As
discussed earlier, hidden transitions join video segments without
breaking the flow of the video. Pauses are video segments in which
the speaker does not talk and appears to be at rest. In radio, such
pauses are frequently used to highlight semantic content [Abel and
Glass 1999]. They are less common in video because natural pauses
are difficult to synthesize. Section 6 describes how our system as-
sists editors in inserting pauses into the interview.
The most basic type of visible transition is a jump-cut, which
simply joins the endpoint frames without inserting anything in-
between. Usually the speaker will appear to jump from one location
in the frame to another. While small differences between adjacent
frames can look like skipping or stuttering artifacts, larger differ-
ences are usually less perceptually jarring. For example, a zoom-
in/zoom-out jump-cut, transitions to a tighter or wider crop of the
next video segment and thus suggests a change in camera view-
point. We generate such zoom-in/zoom-out jump-cuts by comput-
ing the image space bounding box of the speaker’s face across the
video frames following the cut and then cropping the frame either
closer or farther away from this bounding box. Finally, we also gen-
erate cross-fades and fade-to-black transitions, which are typically
used to indicate the passage of time. Once the editor chooses a tran-
sition, the timeline is updated to indicate the transition type with a
colored vertical bar. This allows the editor to see, at a glance, which
transitions he has used across the entire clip.

4 Frame Distance

Our algorithms for locating suitable cuts and generating hidden
transitions rely on a new appearance-based frame comparison met-
ric designed for interview videos. Our metric extends the face com-
parison metric of Kemelmacher-Shlizerman et al. [2011]. We first
describe the features used in the metric and then the metric itself.

4.1 Features

As a pre-process to computing the features, we apply Saragih et
al.’s [2009] face tracker to locate 66 landmark points along the con-
tour of the face, the eyes, eyebrows, nose and mouth.
Face Appearance: Like Kemelmacher-Shlizerman et al. [2011], we
capture face appearance by dividing the bounding boxes of the eyes
and mouth into a small grid of cells (2⇥3 for the eyes and 3⇥3 for
the mouth) and computing a HOG feature [Dalal and Triggs 2005]
for each cell. We then build separate feature vectors for the mouth
and eyes by concatenating the HOG features across the cells for
these two facial components.
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(i) identifies frames where the speaker is relatively quiet and still. The audio score S
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analyzes the alignment between the audio channel and the transcript to find the quiet segments. The visual score S
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(i) identifies frames that
are similar to a frame in which the speaker is at rest. Segments 1 and 3 (marked in red) pass the cut suitability threshold S(i) > 0.9 and the
representative frames are very similar. Cutting from segment 1 to segment 3 is likely to produce high-quality seamless transition.

Body Appearance: To capture body appearance, we first define the
bounding box of the body as the region of the frame centered im-
mediately below the face contour and continuing to the bottom of
the frame. We have found that scaling the width of this bounding
box to 3.2 times the width of the face usually covers the entire body
region. We then divide this bounding box into 4⇥7 cells and con-
catenate the HOG features for each cell into a feature vector. Since
hand gestures usually occur in front of the body, this feature also
encodes changes in appearance due to hand motions.
Face Location: To capture face location we average the (x, y) posi-
tion of all face landmarks. We do not encode body location because
we found that in practice it is strongly correlated to face location.

4.2 Distance Metric

To quantitatively compare two frames of interview footage i and j,
we modify Kemelmacher-Shlizerman et al.’s [2011] distance func-
tion to include the body appearance term as follows

D
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ij

)(1� �ede
ij
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ij

)). (1)

The superscripts {m, e, b} represent the mouth, eyes and body re-
spectively, the d

ij

’s are the normalized �2-distances correspond-
ing to the appearance feature vectors and the �’s are weights that
quantify the relative importance of each feature. We normalize the
�2-distances to the range [0, 1] using the robust logistic function
L(d) = (1 + e��(dx�µ

x)/�x

)�1, where � = ln(99). We em-
pirically found that setting �m = 0.3, �e = 0.1, and �b = 0.6
produced good results for all of our examples.
We compute location-based distance D

loc

(i, j) as the L2 difference
between the face location features of frames i and j and normalize
them using the robust logistic function L(d) described above. We
then combine D

app

and D
loc

into a frame distance function

D(i, j) =
h
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i
↵
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We set the weights �app = 0.6 and �loc = 0.4 for all our exam-
ples. The exponent ↵ nonlinearly scales the distances and allows
us to control the number of in-between frames to select in the case
of seamless transitions, and we set ↵ = 2. We found that com-
bining the terms in this additive way provides good control over
the relative importance of appearance versus location features. Fig-
ure 3 shows the importance of using body/hand appearance and lo-
cation in addition to face appearance as proposed in Photobios. It
also shows that using the L2 distance as is commonly used in gen-
eral video texture methods [Schödl et al. 2000], can produce poor
visual matches in the context of interview footage.

5 Cut Suitability Score

As described in Section 3, editors prefer to place cuts when the
speaker is relatively quiet and still, to avoid disrupting the flow of
the video. We identify such potential cut locations and visualize
them in the timeline and transcript views.
We process each frame i of the raw footage and assign it a cut suit-
ability score S(i) = S

a

(i)S
v

(i) where S
a

(i) considers the audio
channel and S

v

(i) considers the video channel. To identify whether
the speaker is relatively quiet (e.g., between sentences, clauses or
words) we rely on the alignment between the transcript and the au-
dio. If frame i falls between two words we set the audio score S

a

(i)
to 1, otherwise we set it to 0. To identify whether the speaker is
actively gesturing, we compute the appearance distance D

app

(i, j)
(Eqn. 1) between frame i and a reference frame j where the speaker
is at rest. By default we use the first frame of the footage as rest
frame since the speaker is often listening to the interviewer at the
beginning of the video. The editor can optionally select a different
rest frame. Finally we set the visual score S

v

(i) to 1�D
app

(i, j).
We identify potential cut locations by thresholding the cut suitabil-
ity score S(i) > 0.9. In Figure 4, we find segments of frames at
positions 1 and 3 (marked in red) that pass the threshold test. The
representative frames appear very similar to one another in these
segments. The editor could eliminate the extraneous part of the sen-
tence between these two segments and our system would produce a
high-quality seamless transition. Alternatively the editor could tran-
sition from segment 2 to 4 without changing the semantic content of
the sentence. However suitability scores are much lower for these
two segments; the representative frames are not very similar, and
generating a hidden transition would be much more difficult.
Editors may also create cuts to better convey the semantic content
even though the suitability score is low. For example, in Figure 4,
the editor might cut between segments 4 and 5 and between 6 and
7, to remove an ‘um’ and a repeated ‘the’. The endpoint frames
for such cuts are often close to one another in time and are usually
similar in appearance. Thus, our system is able to produce seam-
less transitions between them. Our system marks all the ‘ums’ and
repeated words that can be removed easily; if the frame distance
D(i, j) (Eqn. 2) between the endpoint frames of the segment con-
taining the word is less than 0.1 we highlight it in red.
Once the editor selects a set of words to remove from the transcript,
we further optimize the location of the cut endpoints. We compute
the frame distance D(i, j) between all pairs of frames i and j where
i falls in the segment of frames between the words at the start of the
cut and j falls in the segment of frames between the words at the end
of the cut. If both of the between-words segments contain frames



that pass the cut suitability threshold we limit the computation to
just those frames. Finally, we select the lowest distance pair as the
cut endpoints. We have found that optimizing the cut endpoints in
this manner greatly increases the quality of hidden transitions.

6 Generating Hidden Transitions

A brute-force approach for generating hidden transitions is to first
build a fully-connected graph in which each node is a frame and
edge weights encode frame distance (Eqn. 2). Given the start and
end frames of a cut, we can apply Dijkstra’s shortest path algorithm
to find the smoothest set of in-between frames [Schödl and Essa
2002; Zhang et al. 2004; Kemelmacher-Shlizerman et al. 2011].
The drawback of this brute-force approach is its O(n2) complex-
ity; it requires computing the distance between each pair of frames.
Building the graph for a 10 minute video (30 fps) would require 325
million frame distance calculations. Although such graph construc-
tion is highly parallelizable, access to a large cluster of computers
would be essential for this approach to be practical.
We bypass this problem by hierarchically clustering the input
frames as a pre-process. Then for each cut we compute the low-
est cost path in a top-down manner. While our clustering approach
only approximates the minimum cost path, it requires far less com-
putation than the brute force approach and produces good-quality
results. We also provide an interpolation algorithm that hides any
remaining visual jumps while maintaining natural-looking timing
of the speaker’s head and body motions. Finally, we compute audio
transitions that seamlessly connect the segments across the cut.

6.1 Hierarchical Clustering

We cluster similar frames of the raw footage using k-means with
fixed cluster centers. To start the process we select the first frame
i = 1 of the video as a cluster center and assign all frames j such
that D(i, j) < 0.06, to this cluster. We then pick the frame furthest
from the current set of cluster centers as the next center and repeat
the process until all frames are assigned. To form the next level
of the hierarchy, we cut the distance threshold in half and apply
the same k-means algorithm within each cluster. The subdivision
terminates when a cluster contains less than 100 frames or when
the distance between each frame and the center is less than 0.01.
Although the worst case complexity of this algorithm is O(n2), in
practice we have found it to be far more efficient. In the first frame
of the footage the speaker usually sits still. Since the first frame is
also the first cluster center, our algorithm initially groups together
all the frames in which the speaker is not gesturing. Such frames
make up a large percentage of typical interview video. Our algo-
rithm is order dependent, but because it immediately identifies the
largest cluster of frames, it avoids many unnecessary comparisons.
Our algorithm is designed to handle our non-Euclidean distance
metric. While researchers have developed efficient clustering meth-
ods, including nearest neighbor [Arya et al. 1998] and Nystrom
techniques [Fowlkes et al. 2004], most assume a Euclidean space.
We have tried using BoostMap [Athitsos et al. 2004] to embed the
data in a Euclidean space before applying one of the efficient clus-
tering methods. But, as shown in Section 7, this method does not
capture our frame distance accurately and produces artifacts.

6.2 Hierarchical Shortest Path Computation

To find a smooth set of transition frames, we compute an approxi-
mate shortest path between the endpoints of the cut using the hier-
archical cluster representation. We build the path top-down, starting
from the highest-level clusters and then refining the path to the next
finer level until we reach individual frames.
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Figure 5: Shortest path computation to find in-between frames. We
build a distance matrix between the highest-level frame clusters C1,
C2, C3 and C4. Dijkstra’s algorithm yields C1, C2, C4 as the short-
est path. For each consecutive pair of clusters (C1 and C2, then C2

and C4), we update the matrix to include distances between sub-
cluster centers and then recompute the shortest path. We repeat this
process until we reach the finest level of the hierarchy.

Step 1: We find the highest-level clusters containing the start and
end frames and then compute the shortest path between them using
Dijkstra’s algorithm. This computation requires building a matrix of
pairwise distances between the highest-level cluster centers. Since
we already computed these pairwise distances when building the
clusters, we simply reuse them. In Figure 5, the endpoint frames lie
in clusters C1 and C4, and the shortest path goes through C2.
Step 2: To build the path at the next level of the hierarchy, we first
refine the distance matrix as shown in Figure 5. For each consec-
utive pair of higher-level clusters on the path we update the ma-
trix to include pairwise distances between all of their subcluster
centers. We again note that we already computed the pairwise dis-
tances for the subclusters, so we reuse them (orange edges). How-
ever, we must compute the pairwise distances between subcluster
centers that lie in adjacent top-level clusters (gray edges). We set
all other distances to a large number and then apply Dijkstra’s al-
gorithm to compute the shortest path. The structure of the distance
matrix ensures that the refined path follows the sequence of clus-
ters computed at the higher level. In our example, the refined path
cannot jump from a subcluster in C1 to a subcluster in C4 without
first passing through a subcluster in C2. For further efficiency we
memoize all of the pairwise distance computations so that they can
be reused if necessary to generate additional seamless transitions.
Iteration: We repeat Step 2 until we reach the finest level of the
cluster hierarchy. At that point each cluster node represents a frame
and Dijkstra’s algorithm yields that sequence of transition frames.

6.3 Interpolation and Data-Driven Timing

Directly playing back the transition sequence of frames found by
our hierarchical shortest path algorithm can produce unnaturally
fast motions for the speaker’s head and hands. To slow the mo-
tions and hide any remaining visual jumps, we synthesize additional
in-between frames; for each consecutive pair of transition frames
we first compute dense optical flow using the approach of Brox et
al. [2004] and then interpolate the flow to form the new frames.
The number of interpolated in-between frames sets the timing of the
transition. To ensure that the motions of the speaker appear natural,
we have developed a data-driven approach to learn the appropri-
ate number of in-between frames. We consider pairs of raw footage
frames (i, j) and encode the relationship between the number of in-
termediate frames N(i, j) = |i�j| and the frame distance D(i, j)
as a 2D histogram. As shown in the inset below, each row of this
histogram corresponds to one bin of D(i, j) and forms a 1D his-
togram of the distribution of raw footage frame pairs (i, j) over



Figure 6: Examples of hidden transitions generated by our algorithm for Maria (top) and Louis (bottom). The endpoint frames are outlined
in red. We show only the in-between frames found by our shortest path computation and do not show frames generated by our interpolation
method. Colored under-bars indicate frames that are at most 20 frames apart in the raw footage.

N(i, j). We use 50 bins for frame distance D(i, j) and limit the
maximum number of intermediate frames N(i, j) to 20. For effi-
ciency, we generate the frame pairs (i, j) by randomly sampling
2000 frames i and considering all frames j 2 [i�20, i+20].
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To determine the appropriate num-
ber of in-between frames for a
pair of frames in our transition se-
quence (p, q), we first compute the
frame distance D(p, q) and look
up the corresponding row of the
2D histogram. The mode of this
1D row histogram corresponds to
the most frequent number of in-
termediate frames N(i, j) for that
frame distance bin. In practice we
have found that when speakers
move slowly, the 1D histogram is
relatively flat as frame distance is similar for all pairs (i, j), regard-
less of the number of intermediate frames. In such cases, simply
using the mode N(i, j) as the number of in-between frames intro-
duces high variance in timing because a small amount of variance
in the flat distribution can lead to large differences in the mode.
We use a more robust approach. We first find all the peaks in the
1D histogram that are within 10% of the mode (orange and red
bars in inset). Amongst those peaks we choose the one with the
smallest N(i, j) as the number of in-between frames to interpolate
(red bar in inset). Although this robust formulation favors the fastest
transition when the histogram is relatively flat, we have found that
it produces natural looking speaker motions.

6.4 Pauses

Our system assists editors in inserting pauses of any desired length.
As a pre-processing step, we identify pauses as segments of the raw
footage in which the appearance of the mouth is stable i.e. changes
very little within a window of 10 frames. We first mark frames i
where D

app

(i, j) < 0.02 for all j 2 [i�5, i+5]. Since we are
only interested in the mouth, we set �m = 1, and �e = �b = 0
to evaluate D

app

(i, j). We then label any sequence of 10 or more
marked frames as a pause segment. Note that we cannot use the
audio to identify pauses, since that would eliminate all sequences
where the speaker is at rest, but the off-screen interviewer is talking.
The editor can then choose to insert a pause at any location in the
video. We compute the average frame distance between the frames
on either side of the desired pause location and the corresponding
endpoint frames of every pre-marked pause segment and we select
the segment that yields the minimum average frame distance. The
editor can optionally specify a desired pause duration. If the desired

# Transitions Computation Time
Raw Time Hidden Pauses Visible Clustering Hidden Pauses

Huda 14m 47s 12 5 0 47m 7s 12s
Kate 19m 22s 14 3 0 1h 12m 9s 14s
Louis 8m 07s 18 6 2 30m 5s 14s
Maria 4m 38s 14 2 1 22m 5s 9s
Vidi 17m 29s 10 3 2 52m 8s 16s

Table 1: Number of transitions and computation times for five
videos. Raw time is the length of the input footage which was cap-
tured at 30 frames per second.

duration is longer than the selected pause segment, we use the video
texture algorithm [Schödl et al. 2000] to extend the pause segment.
If the desired duration is shorter than the segment we simply drop
the extra frames. Finally, we generate seamless hidden transitions
at both endpoints to smoothly insert the segment into the video.
Audio Transitions: Pauses and hidden transitions introduce addi-
tional frames into the video. However, we do not have correspond-
ing audio for these frames. To fill these audio gaps we isolate the
background noise of the environment. We threshold the amplitude
of the audio signal to find relatively quiet moments and join them
using an audio cross-fade that slowly fades in the audio of the next
segment. The fade is essential to prevent audible clicking artifacts.

7 Results

Table 1 and Figures 6, 7 and 8 summarize our results. We used our
tools to edit five videos we obtained from several sources including
a corporate marketing department (Louis), professional journalists
(Maria, Vidi) and student actors (Huda, Kate). The running time of
the raw footage and the number of transitions we created are given
in Table 1. We used the suitability score to place most of the cuts,
and we removed all of the ’ums’ and repeated words, which ranged
between 2 instances for Vidi and 11 for Maria. We also placed sev-
eral more challenging cuts that were designed to maintain the se-
mantic flow of the story, even though the suitability scores were
low. The edited videos run 50-100s in length. We encourage read-
ers to view the videos on our website 2.
Since visible transitions are easy to create using off-the-shelf video
editing software, we focused on generating hidden transitions.
While our system could generate good hidden transitions in almost
all instances, in about 10% of the cases we chose to either remove
a cut or use a visible transition because we were unsatisfied with
the results. However even for many of the challenging cuts, where
the endpoint frames are dissimilar (Figure 6 and Figure 7 top), our
method was able to create a hidden transition with a plausible set

2http://vis.berkeley.edu/papers/vidtrans/
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Figure 7: Comparison of in-between frames found using our shortest path computation (top) versus BoostMap (middle) and optical flow
interpolation (bottom). The frames found using BoostMap differ significantly from one another and from the ending frame. Interpolation
between significantly different endpoints also produces poor results as Kate’s right arm appears to fade in from the background.

Figure 8: To transition between the endpoint frames (red outline), our shortest path algorithm finds two in-between frames from the raw
footage and generates four intermediate frames using optical flow interpolation (blue outline). However, the interpolation fails to properly
account for the motion of Louis’ hands and instead simply fades them in.

of in-between frames. These figures do not include the optical flow
based interpolation frames. However, the number of interpolated
frames sets the timing of the transition and choosing it correctly is
essential. The videos show that our learning approach for choosing
this number produces much better results than simply setting it to a
constant (e.g., 8 frames in our examples).
Table 1 reports the computation time required to cluster the raw
footage frames and the average time required to generate the hid-
den transitions and pauses, using our unoptimized MATLAB imple-
mentation on a 2.4GHz MacBook Pro with 8GB of memory. While
clustering can take up to 1h 20m for a 20m video, the average time
for computing a hidden transition is 6.8s. Thus, once the cluster-
ing pre-process is complete the editor can create and test possible
transitions relatively quickly.
We have also used our interface to combine different takes of an ac-
tor narrating a story. For each take, we cued the lines of the actors
and occasionally directed them to increase or decrease their expres-
siveness. In the final edit, we then created a number of seamless
hidden transitions to merge the best segments of the different takes.
The videos contain the complete resulting stories.
Figure 7 compares our hidden transition algorithm to two alter-
native methods. First, we use Athitsos et al.’s implementation of
BoostMap [2004] to embed our frame distance function into a Eu-
clidean space, and then construct the hierarchical clusters using ap-
proximate nearest neighbors [Arya et al. 1998]. Second, we use
optical-flow interpolation to generate a set of in-between frames.
However, both approaches produce visible artifacts when the end-
point frames are dissimilar. More sophisticated interpolation algo-
rithms [Mahajan et al. 2009; Shechtman et al. 2010] might improve
the results. However, since these methods do not re-use existing
frames, it is difficult for them to generate natural-looking motion
when the endpoint frames differ significantly.

User Feedback: We have informally shown our tools and results to
five journalists and four professional video editors who often work
with interview footage. All of them appreciated the ease of find-
ing potential cuts through our transcript and timeline views. They
felt that the hidden transition would give them a new alternative to
visible cuts and extend the kinds of clips they could produce. The
journalists reported that they would be either comfortable or very
comfortable using these hidden transitions for videos designed for
the web, and the video editors indicated that our proposed interface
and tools would be useful in their interview editing workflows.
Limitations: While our approach for generating hidden transitions
usually works well, if the endpoint frames differ significantly in
appearance it can produce less successful results. For example, in
Figure 8 Louis’ hands are not visible at the start of the transition
and must become visible by the end. While our algorithm finds two
intermediate frames, they both show most of the hands. Our inter-
polation algorithm for refining the transition ends up simply fading
in the hands. In general, the quality of our hidden transitions im-
proves when the raw footage is longer, since our algorithm has a
greater variety of frames to choose from.We have found that about
5 minutes of raw footage is sufficient to produce good results.
Our algorithms for generating hidden transitions and pauses work
best when the raw footage contains a still background and the the
lighting and camera position are fixed. When these conditions are
violated the transitions may contain unnatural movement in the
background or variations in illumination. In practice however, in-
terviews often take place in such stable environments.
To compute cut suitability scores, we use a single frame as the rest
frame. However, if the speaker moves significantly during the inter-
view, his resting position may change. Our algorithm does not rec-
ognize new rest positions and will give low scores to these frames.
As future work, we plan to extend our algorithms to compute still
frames locally, rather than globally. However, we found that in our



example videos, our global method was sufficient as the speaker
was roughly at the same location throughout the footage.

8 Conclusion

Producing a high-quality interview video is a laborious process
even for skilled editors. We have presented a set of tools that are
designed to reduce the tedious, low-level work involved in placing
cuts and creating transitions so that editors can focus on the high-
level work of telling a story. As video becomes the dominant form
of sharing information on the Internet we believe that such semi-
automated tools for increasing production quality will be essential.
Acknowledgments We thank Douglas Anarino for helping us de-
velop our video editing interface, and Scott Cohen for providing us
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